Поиск в словарях
Искать во всех

Физический энциклопедический словарь - физическая оптика

 

Физическая оптика

физическая оптика
рассматривает проблемы, связанные с природой света и световых явлений. Утверждение, что свет есть поперечные эл.-магн. волны, основано на результатах огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света и распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия). Совокупность явлений, в к-рых

489



проявляется волн. природа света, изучается в крупном разделе физ. О,— волновой оптике. Её матем. основанием служат общие ур-ния классич. электродинамики — Максвелла уравнения. Св-ва среды при этом характеризуются макроскопич. матер. константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости , входящими в ур-ния Максвелла в виде коэффициентов. Эти величины однозначно определяют показатель преломления n среды: n=.

Феноменологическая волн. О., не рассматривая связь величин  и  (обычно известных из опыта) со структурой в-ва, позволяет объяснить все эмпирич. законы геом. О. и установить границы её применимости. В отличие от геометрической волновая О. даёт возможность рассматривать процессы распространения света не только тогда, когда размеры формирующих или рассеивающих световые пучки систем много больше длины волны X, но и при любом соотношении между ними. Во многих случаях решение конкретных задач методами волн. О. оказывается чрезвычайно сложным. Поэтому получила развитие квазиоптика, в к-рой процессы распространения, преломления и отражения описываются в рамках геом. оптики, но при этом учитывается и волн. природа из лучения. Геом. и волн. подходы формально объединяются в геом. теории дифракции, в к-рой, кроме падающих, отражённых и преломлённых лучей, постулируется существование разл. типа дифрагированных лучей.

Огромную роль в развитии волн. О. сыграло установление связи величин  и  с мол. и крист. структурой в-ва (см. Кристаллооптика, Металлооптика). Это позволило объяснить все явления, сопровождающие распространение света в рассеивающих и анизотропных средах и вблизи границ разделов сред с разными оптич. хар-ками, а также зависимость от , (дисперсию) оптич. св-в сред, влияние на световые явления давления, темп-ры, звука, электрич. и магн. полей и др.

В классической волн. О. параметры среды считаются не зависящими от интенсивности света; соответственно оптич. процессы описываются линейными дифф. ур-ниями. Однако во мн. случаях, особенно при больших интенсивностях световых потоков, это предположение несправедливо и показатель преломления оказывается зависящим от напряжённости электрич. поля световой волны (нелинейная поляризуемость в-ва). Это приводит к изменению угла преломления светового пучка на границе двух сред при изменении его интенсивности, к сжатию и расширению световых пучков (самофокусировка света и его самодефокусировка), к изменению спектр. состава света, проходящего через нелинейную среду (генерация оптических гармоник), к вз-ствию световых пучков и появлению в излучении т. н. комбинационных частот, а в среде — выделенных направлений преимущественного вз-ствия световых волн (параметрич. явления, см. Параметрический генератор света) и т. Д. Эти явления рассматриваются нелинейной оптикой, получившей особенно большое развитие в связи с созданием лазеров.

Хорошо описывая распространение света в матер. средах, волн. О. не смогла удовлетворительно объяснить процессы его испускания и поглощения. Исследование этих процессов (фотоэффекта, фотохим. превращений молекул, спектров оптических и пр.) и общие термодинамич. соображения о вз-ствии эл.-магн. поля с в-вом привели к выводу, что элем. система (атом, молекула) может испускать или поглощать энергию лишь дискр. порциями (квантами), пропорциональными частоте излучения v. Поэтому световому эл.-магн. полю необходимо сопоставить поток квантов света — фотонов. В простейшем случае энергия, теряемая или приобретаемая изолированной квант. системой в элем. акте вз-ствия с оптич. излучением, равна энергии фотона, а в более сложном — сумме или разности энергий неск. фотонов (см. Многофотонные процессы). Явления, в к-рых при вз-ствии света и в-ва проявляются квант. св-ва элем. систем, изучаются в квантовой оптике методами, развитыми в квантовой механике и квантовой электродинамике.

Двойственность природы света (наличие у него одновременно характерных черт, присущих и волнам и ч-цам) явл. частным проявлением корпускулярно-волнового дуализма. Исторически концепция корпускулярно-волн. дуализма, впервые сформулированная именно для оптического излучения, окончательно утвердилась после обнаружения волновых свойств у материальных частиц (см. Дифракция микрочастиц) и лишь затем экспериментально подтвердилась для радиоизлучения (квантовая электроника). Открытие квантовых явлений в радиодиапазоне во многом стёрло резкую границу между радиофизикой и О. Сначала в радиофизике, а затем в физ. О. сформировалось новое направление, связанное с генерированием вынужденного излучения и созданием квантовых усилителей и квантовых генераторов излучения (мазеров и лазеров). В отличие от неупорядоченного светового поля обычных (тепловых и люминесцентных) источников, излучение лазеров характеризуется временной и пространственной упорядоченностью (когерентностью), высокой монохроматичностью (v/v~10-14, см. Монохроматическое излучение) и предельно

малой (вплоть до дифракционной) расходимостью пучка. Последнее позволяет при фокусировке получать не достижимые ни для каких других источников плотности излучения (~1018 Вт-см-2•ср-1). Появление лазеров стимулировало пересмотр и развитие традиционных и возникновение новых направлений физ. О. Большую роль стали играть исследования статистики излучения (статистическая оптика), сформировалась как самостоят. раздел нелинейная оптика, получили развитие методы создания узконаправленных когерентных пучков света и управления ими (когерентная О.) и т. д. Особую важность приобрело изучение круга явлений, связанных с воздействием интенсивных световых потоков на в-во. Развитие лазерной техники привело к новому подходу при создании оптич. элементов и систем и, в частности, потребовало разработки новых оптич. материалов, пропускающих без их повреждений интенсивные световые потоки (силовая оптика).

Все разделы оптики имеют многочисл. практич. применения. Задачи рационального освещения улиц, помещений, рабочих мест на производстве, зрелищ, историч. и архитектурных памятников и пр. решаются светотехникой на основе геом. О. и фотометрии, учитывающей законы физиол. О. Геом. О. решает задачи получения в разл. условиях стигматических изображений, соответствующих объектам как по геом. форме, так и по распределению яркости, а также исследует причины искажений изображения и их уровень в реальных оптич. системах (см. Аберрации оптических систем). Геом. О. с привлечением физ. О. устанавливает разрешающую способность приборов и систем, учитывает зависимость показателя преломления от  (дисперсию света) и т. д.

Новые возможности получения оптич. образов без применения фокусирующих систем даёт голография, основанная на однозначной связи формы тела с пространств. распределением амплитуд и фаз распространяющихся от него (рассеянных им) световых волн. Для регистрации поля с учётом распределения фаз волн в голографии используют монохроматич. излучение. В месте регистрации изображения на рассеянное телом излучение накладывают дополнительное когерентное поле и фиксируют (напр., на фоточувствит. слое) возникающую при этом интерференц. картину. При рассматривании полученной т. о. плоской голограммы в когерентном (монохроматическом) свете или объёмной голограммы в белом свете получается объёмное изображение предмета. Развитие голографии связано с появлением лазеров, позволяющих получать интенсивные когерентные световые поля. Она находит применение при решении мн. научных и техн. проблем (изучение св-в плазмы, исследование сдвигов и напряжений в телах и т. д.).

490



Оптич. явления и методы применяются для аналитич. целей и контроля в разл. областях науки и техники. Особенно большое значение имеют методы спектрального анализа и люминесцентного анализа, основанные на связи структуры атомов и молекул с хар-ром их спектров испускания и поглощения, а также спектров комбинационного рассеяния света. По виду спектров можно установить мол. и ат. состав, агрегатное состояние, темп-ру в-ва, исследовать кинетику протекающих в нём физических и химических процессов. Применение в спектроскопии лазеров обусловило бурное развитие нового её направления — лазерной спектроскопии.

Интерферометры применяются для измерений длин волн и изучения спектров, определения показателей преломления прозрачных сред, абс. и относит. измерений длин, измерений угл. размеров звезд и др. косм. объектов. В пром-сти интерферометры используют для контроля качества и формы поверхностей, регистрации небольших смещений, обнаружения по малым изменениям показателей преломления непостоянства темп-ры, давления или состава в-ва и т. д. Созданы лазерные интерферометры с уникальными хар-ками, расширившие возможности интерференц. методов за счёт большой мощности и высокой монохроматичности излучения лазеров.

Явление поляризации света лежит в основе ряда методов исследования структуры в-ва с помощью многочисл. поляризационных приборов. По изменению степени поляризации (деполяризации) света при рассеянии и люминесценции можно судить о тепловых и структурных флуктуациях в в-ве, флуктуациях концентрации р-ров, о внутрии межмолекулярной передаче энергии, структуре и расположении излучающих центров и т. д. Применяется поляризационно-оптический метод исследования напряжений, возникающих в тв. телах (напр., при механич. нагрузках), по изменению поляризации прошедшего через тело света, а также метод исследования св-в поверхности тел по измерению поляризации при отражении света (эллипсометрия). В кристаллооптике поляризац. методы используются для изучения структуры кристаллов, в хим. пром-сти — как контрольные методы при производстве оптически активных веществ (см. также Сахариметрия), в оптич. приборостроении — для повышения точности отсчётов приборов (напр., фотометров).

Широкое распространение получили высокочувствительные спектральные приборы с дифракционной решёткой в кач-ве диспергирующего элемента (монохроматоры, спектрографы, спектрофотометры и др.), использующие явление дифракции света. Дифракция света на ультразвуке в прозрачных средах позволяет определить упругие константы в-ва, а также создать акустооптич. модуляторы света (см. Модуляция света).

Оптич. методы, основанные на анализе рассеяния света (особенно мутными средами), имеют большое значение для мол. физики и её приложений. Так, нефелометрия даёт возможность получать данные о межмолекулярном взаимодействии в р-рах, определять размеры и мол. массу макромолекул полимеров, а также ч-ц в коллоидных системах, взвесях и аэрозолях. Ценные сведения о структуре уровней энергии молекул и св-вах в-ва даёт изучение комбинационного рассеяния света, Мандельштама — Бриллюэна рассеяния и вынужденного рассеяния света, открытого благодаря использованию лазеров.

Очень широка сфера практич. применения приборов, основанных на квант. оптич. явлениях,— фотоэлементов и фотоэлектронных умножителей, фотосопротивлений, фотодиодов, электронно-оптических преобразователей и др. усилителей яркости изображения, передающих и приёмных телевиз. трубок и т. д. Фотоэлементы используются не только для регистрации излучения, но и как устройства, преобразующие лучистую энергию Солнца в электрич. энергию (т. н. солнечные батареи). Фотохим. процессы лежат в основе фотографии. На основе изучения изменений оптич. св-в в-в под действием света (фотохромизм) разрабатываются новые системы записи и хранения информации для нужд вычислит. техники и созданы защитные светофильтры, автоматически усиливающие поглощение света при возрастании его интенсивности. Получение мощных потоков монохроматического лазерного излучения с разными длинами волн открыло пути к разработке методов лазерного разделения изотопов и стимулирования направленного протекания хим. реакций, позволило О. найти новые, нетрадиционные применения в биофизике (воздействие лазерных световых потоков на биол. объекты на мол. уровне) и медицине. Благодаря возможности с помощью лазеров концентрировать на площадках с линейными размерами ~10 мкм большие мощности излучения, интенсивно развивается оптич. метод получения высокотемпературной плазмы с целью осуществления управляемого термоядерного синтеза.

Успехи О. стимулировали развитие оптоэлектроники. Первоначально её задачи сводились к простой замене электронных элементов в счётно-решающих и др. устройствах оптическими. Затем (70-е гг. 20 в.) стали разрабатываться принципиально новые подходы к решению задач вычислит. техники и обработки информации, исходящие из методов голографии, и предлагаться новые техн. решения, основанные на применении микрооптич. устройств (интегральная оптика). С появлением лазеров новое развитие получили оптич. дальнометрия (см. Светодальномер), оптическая локация и оптическая связь. В них используются элементы и устройства, принципы действия к-рых основаны на изменении хар-ра поляризации света при его прохождении через электроили магнитоактивные среды (см. Магнитооптика, Керра эффект, Поккельса эффект, Фарадея эффект, Электрооптика). Методами оптич. локации было уточнено расстояние до Луны, ведётся слежение за ИСЗ; по линиям лазерной оптич. связи осуществляются телефонные переговоры и передаются изображения. Создание световодов с малым затуханием повлекло за собой разработки систем кабельной оптич. видеосвязи.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):